8 800 777 800 2

Бесплатный звонок по России

Что такое PN переход, свойства и принцип работы

02 Апр 2021

Что такое PN переход?

В этой статье мы поговорим об одной из самых важных концепций в полупроводниковой электронике - о PN-переходе. Когда мы говорим о полупроводниковых устройствах, таких как диоды, транзисторы и другие, основой их работы является PN-переход.

Некоторые полупроводниковые устройства, такие как фотопроводники, обычно создаются путем добавления примесей одного типа. Однако, это ограниченный сценарий, и для большинства полупроводниковых устройств требуются оба типа примесей.

PN-переход создается путем добавления (так называемого легирования) акцепторных примесей на одной стороне полупроводникового кристалла, в то время как другая сторона легируется донорными примесями. Граница между этими двумя областями называется PN-переходом.


Полезные статьи:

Основные характеристики диодов, виды, параметры 

Светодтодное освещение, основные темины и характеристики

Все статьи

Основы полупроводниковой электроники

Электропроводность полупроводника зависит от концентрации электрических носителей в зоне проводимости. Свойства проводимости зависят от количества примесей, присутствующих в процессе легирования.

Проводимость кремния увеличивается в 10 3 раз при комнатной температуре за счет добавления 1 атома бора на 10 5 атомов кремния.

Полупроводник N-типа создается путем легирования кристалла кремния пятивалентной примесью, такой как сурьма, а полупроводник P-типа формируется путем легирования кристалла кремния трехвалентной примесью, такой как бор, в крошечной концентрации.

И сурьма, и бор являются основными полупроводниковыми примесями, используемыми в процессе легирования; поэтому их называют "металлоидами". По отдельности полупроводники N-типа и P-типа электрически нейтральны.

Принцип работы PN-перехода

PN-переход создается в отдельном кристалле полупроводника путем легирования одной стороны кристалла атомами акцепторной примеси, создавая его как P-тип, и атомами донорной примеси, создавая его как N-тип. Область, где сходятся P-тип и N-тип, называется PN-переходом.

В этой области электроны в материале N-типа рассеивают переход и объединяются с дырками в материале P-типа. Область материала P-типа, которая находится рядом с переходом в полупроводнике, принимает отрицательный заряд по той причине, что электроны притягиваются дырками.

Когда электроны уходят из области N-типа, она принимает положительный заряд. Следовательно, на стыке существует склонность свободных электронов диффундировать в область P-типа, а дырок - в область N-типа, и этот процесс называется диффузией.

Тонкий слой, зажатый между этими двумя областями, обедненный основными носителями, называется областью истощения. Состояние равновесия PN-перехода определяется как состояние, в котором PN-переход остается без приложенного к нему внешнего электрического потенциала.

Это также может быть дополнительно определено как состояние смещения нулевого напряжения. Ширина обедненной области невероятно мала, обычно несколько тысяч миллиметров, ток через диод может не течь.

PN-переход при приложении потенциала

В зависимости от ширины области истощения, наблюдаются различные свойства. Если на таком расстоянии приложен положительный потенциал, область типа P становится положительной, и, следовательно, тип N становится отрицательным. Дырки перемещаются в сторону отрицательного напряжения.

В равной степени, электроны движутся к положительному напряжению и перепрыгивают через слой обеднения. Плотность заряда P-типа в обедненной области укомплектована отрицательно заряженными акцепторными ионами, в результате чего плотность заряда N-типа становится положительной.

Потенциальный барьер представляет собой перегородку носителей заряда в середине PN-перехода. Этот потенциальный барьер должен преодолеваться за счет внешнего источника электрического потенциала, чтобы PN-переход проводил электрический ток.

Формирование перехода и потенциального барьера в полупроводниковом диоде происходит на протяжении всего производственного процесса полупроводникового диода с PN переходом. Степень потенциального барьера может зависеть от материалов, используемых при производстве диодов с PN переходом.

Полупроводниковый диод с кремниевым PN переходом имеет превосходную величину потенциального барьера, чем германиевые диоды.

PN переход

PN-переход создается путем вставки P-типа и N-типа в один полупроводниковый кристалл. Большинство носителей заряда в P-типе - это положительно заряженные дырки, а в N-типе - отрицательно заряженные электроны.

Общий заряд с обеих сторон PN-перехода должен быть одинаковым и противоположным, чтобы поддерживать состояние нейтрального заряда вокруг перехода из-за пары электрон-дырка. Область между P-типом и N-типом, где носители заряда дублируются несколько раз, называется областью истощения.

В состоянии равновесия на PN-переходе отсутствует проводимость. Проводимость PN-перехода включает диффузию основных носителей заряда и дрейф неосновных носителей заряда. Проведение электрического тока в PN-переходе связано как с зоной проводимости, так и с валентной зоной.

После подключения внешней батареи поток электронов происходит в зоне проводимости, а поток дырок - в валентной.

В состоянии равновесия смещения при нулевом напряжении меньшая концентрация дырок и электронов будет дрейфовать просто под влиянием электрического поля E. Диффузия основных носителей заряда должна пересечь потенциальный барьер PN-перехода, образованный в результате истощения.

Это означает, что основные носители заряда N-типа и P-типа должны достичь энергии qVB электрон-вольт (эВ), прежде чем преодолеют барьер и диффундируют в область P-типа или N-типа.

Сдвиг электронов от N-стороны PN-перехода к дыркам, аннигилированным на P-стороне PN-перехода, создает напряжение потенциального барьера. Значение барьера близко к 0,6-0,7 В в кремнии, 0,3 В в германии и варьируется в зависимости от уровней легирования в различных полупроводниках.

Блоки полупроводников P-типа и N-типа в контакте друг с другом не обладают эксплуатационными свойствами. Внешний источник напряжения должен преодолеть потенциальный барьер, чтобы PN-переход стал проводником электричества. Если источник потенциала подключен таким образом, что положительный вывод подключен к стороне P, а отрицательный вывод - к стороне N, то это называется прямым смещением PN-перехода.

Отрицательный вывод обеспечивает диффузию электронов N-типа в направлении обедненного слоя. Положительный вывод в равной степени удаляет электроны в P-типе, создавая дырки, которые диффундируют к области истощения.

Если аккумуляторная батарея имеет достаточную мощность, чтобы преодолеть барьерное напряжение, тогда большинство носителей заряда от N-типа и P-типа объединяются и истощают переход. В результате большее количество носителей заряда воспроизводится и течет в сторону обедненной области, пока приложенный потенциал превышает потенциальный барьер.

Таким образом, основной ток заряда проходит по направлению к переходу. Во время этого подхода, когда ток проходит благодаря основным носителям заряда, PN-переход считается смещенным в прямом направлении.

Если клеммы батареи перевернуты, то большинство носителей заряда N-типа притягиваются к положительной клемме от PN-перехода, а отверстия притягиваются к отрицательной клемме вдали от PN-перехода. Ширина обедненного слоя увеличивается с приложенным потенциалом, в результате рекомбинация носителей заряда в обедненном слое не происходит. Следовательно, не происходит проведения электрического тока. При таком подходе считается, что PN-переход имеет обратное смещение.

Встроенный потенциал соединения PN

Основные носители заряда в области N-типа (электроны) могут пересекать переход, чтобы рекомбинировать с основными носителями заряда в области P-типа (дырками). В результате в области P-типа накапливается отрицательный статический объемный заряд, так как атомы трехвалентной примеси бора имеют отрицательный статический заряд. Они высвобождают положительно заряженную дырку в валентной зоне.

А в области N-типа по схожим причинам образуется положительный объемный заряд, который называется зоной объемного заряда или зоной истощения. Поскольку в этом небольшом объеме имеется мощное электрическое поле, плотность свободных носителей заряда незначительна в состоянии теплового равновесия.

Если полупроводники P-типа и N-типа приближаются, возможный потенциальный барьер возникает в обедненном слое. Фактически, статические объемные заряды накапливаются на границах PN-перехода, положительные заряды в области N-типа и отрицательные заряды в области P-типа. Они создают электрическое поле в диапазоне от N-типа до P-типа, что предотвращает диффузию и добавленная рекомбинация электронов и дырок.

Диффузия останавливается образованием внутреннего электрического поля. В результате существования этого двойного слоя зарядов по обе стороны от PN-перехода, потенциальный барьер резко меняется в пределах зоны истощения, и разность потенциалов Vd, называемая диффузионным потенциалом или встроенным потенциалом, достигает значимых значений.

Электростатический потенциал постоянен по всему кристаллу вместе с зоной пространственного заряда, поскольку учитывает не только электрическое поле, но и концентрацию носителей заряда. Встроенный потенциал из-за концентрации носителей заряда точно компенсирует электростатический потенциал.

Встроенный потенциал (диффузионный) пропорционален разнице энергий Ферми двух неограниченных полупроводников:

E = (1 / q) * {E Fp - E Fn } = (kT / q) ln {[N A N D ] / n 2 }

Где

  • E - напряжение перехода нулевого смещения
  • (kT / q) тепловое напряжение 26 мВ при комнатной температуре.
  •  и N B   - примесные концентрации акцепторных и донорных атомов.
  • n - собственная концентрация.

Встроенный потенциал или потенциал перехода полупроводника равен потенциалу в обедненной области в состоянии теплового равновесия. Поскольку тепловое равновесие подразумевает постоянство энергии Ферми во всем устройстве PN-диода.

Таким образом, энергии Ферми зоны проводимости и валентной зоны смещены вверх или вниз и демонстрируют плавное отклонение в области обедненного слоя. В результате, существует разность электростатической потенциальной энергии между областями P-типа и N-типа, равная qV d.

Внешний потенциал, необходимый для преодоления потенциала перехода, зависит от рабочей температуры, а также от типа полупроводника. Даже если к полупроводнику не приложен внешний потенциал, существует некоторый барьерный потенциал из-за электронно-дырочной пары.

PN-переход формируется на отдельном полупроводнике, а электрические контакты прокладываются вокруг поверхности полупроводника, чтобы обеспечить электрическое соединение для внешнего источника питания. В результате, конечное устройство называется диодом с PN-переходом или сигнальным диодом.

 


Предыдущие